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Abstract

Requirements to limit pollutant emissions from
the gas turbine engines for the future High-Speed
Civil Transport (HSCT) have led to consideration of
various low-emission combustor concepts. One
such concept is the Integrated Mixer-Flame Holder
(IMFH). This report describes a series of IMFH
analyses performed with KIVA-II, a multi-dimensional
CFD code for problems involving sprays, turbu-
lence, and combustion. To meet the needs of this
study, KIVA-II's boundary condition and chemistry
treatments are modified. The study itself examines
the relationships between fuel vaporization, fuel-air
mixing, and combustion. Parameters being con-
sidered include: mixer tube diameter, mixer tube
length, mixer tube geometry (converging-diverging
versus straight walls), air inlet velocity, air inlet swirl
angle, secondary air injection (dilution holes), fuel
injection velocity, fuel injection angle, number of
fuel injection ports, fuel spray cone angle, and fuel
droplet size. Cases are run with and without com-
bustion to examine the variations in fuel-air mixing
and potential for flashback due to the above
parameters. The degree of fuel-air mixing is judged
by comparing average, minimum, and maximum
fuel/air ratios at the exit of the mixer tube, while
flame stability is monitored by following the location
of the flame front as the solution progresses from
ignition to steady state. Results indicate that fuel-air
mixing can be enhanced by a variety of means, the
best being a combination of air inlet swirl and a
converging-diverging mixer tube geometry. With the
IMFH configuration utilized in the present study,
flashback becomes more common as the mixer
tube diameter is increased and is instigated by dis-
turbances associated with the dilution hole flow.

Background

Nitrogen oxides (NO,) are serious contributors
to air pollution, and considerable engineering effort
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is being expended to reduce their emission from the
gas turbine combustors of the future HSCT. Lean
combustion concepts are one means of achieving
low emissions, as NO, formation is reduced sub-
stantially at low equivalence ratios. Lean premixed-
prevaporized (LPP) systems (Fig. 1A) separate the
fuel vaporization and fuel-air mixing processes from
the final combustion process. This eliminates non-
uniformities in the fuel-air mixture, which eliminates
hot spots where high levels of NO, are formed.
Unfortunately, lean combustion devices have some
drawbacks, particularly with regards to flame sta-
bility."

The IMFH is one means of incorporating the
LPP concept into a gas turbine engine combustor.
However, several IMFH fuel-air mixing and flame
stability issues are yet to be fully resolved, making
detailed analysis of IMFH configurations a high pri-
ority.?

The present series of calculations examines the
role of IMFH geometry and various inflow param-
eters on fuel-air mixture uniformity and flame sta-
bility. These analyses start with the cylindrical con-
figuration consisting of a straight tube with a “hypo-
dermic needle” fuel injector adopted for the LPP
sector rig (Fig. 1B).> To reduce computational
costs, only a single IMFH tube is considered. The
downstream area change for the dump region of
this single tube is calculated by dividing the dump
area shared by all of the IMFH tubes in the sector
rig by the number of tubes.

Numerical Method

The calculations are performed with KIVA-ll, a
CFD program developed originally to study the in-
cylinder combustion dynamics of internal combus-
tion engines.* However, because the code can treat
problems combining sprays, turbulence, and com-
bustion, it can be employed in the analysis of gas
turbine combustors as well.>®

KIVA-II describes fuel sprays with a stochastic



model applied to discrete computational particles
representing collections of droplets with identical
physical properties (size, temperature, velocity,
etc.). These particles interact with the surrounding
fluid, exchanging mass, momentum, and energy as
the droplets travel downstream and evaporate. The
spray model also incorporates sub-modeis for drop-
let collisions, turbulent dispersion, and aerody-
namic breakup. In practice, the collision and break-
up sub-models are often too efficient, rapidly skew-
ing droplet distributions to the smaller sizes in an
unrealistic fashion. As a result, these two models
are not used here. :

To characterize turbulence within the flowfield,
KiVA-Il employs a standard k-¢ model with wail
functions.

KIVA-II can accept an arbitrary reaction set and
incorporates a quasi-equilibrium option to split fast
and slow reactions between equilibrium and finite-
rate kinetics, respectively. However, as originally
released, KIVA-Il is limited to laminar kinetics. For
this study, the mixing-controlled combustion model
of Magnussen and Hjertager is added to portray the
combustion-turbulence interaction.” This model is

used in conjunction with the simplified reaction

scheme developed by Ying and Nguyen to describe
propane combustion.® Thus, while the fuel (Jet-A)
has the physical properties (vapor pressure, latent
heat, etc.) of Jet-A when it is in the liquid state, it is
treated as propane once vaporized.

Owing to its origins, KIVA-II's ability to treat
some of the geometries to be examined in this
study is also limited. To rectify this, the program's
boundary condition treatment is revised to aliow in-
corporation of dilution jets, non-vertical walls, and
inflow-outflow boundary planes with mixtures of
open and closed grid cells.

Grids and Boundary Conditions

A variety of grids are used in this study, almost
all generated with KIVA-II's internal grid generation
routines. The grid for the baseline case (Figs. 2A
and 2B} is a uniform cylindrical mesh. Due to sym-
metry about the plane passing through the fuel
injection tube, only a 180° half-cylinder is needed,
leading to a 27x19x205 mesh in cases when the
dump section is included and a 11x19x151 mesh
when only the mixer tube is analyzed. Cell spacing
is chosen, in part, such that the dilution holes near
the mixer tube exit can be approximated by 2x2
clusters of cells. The rectangle formed by these
cells has 93% of the area and 93% of the width of
the original circular dilution hole.
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To test some geometry variables and inlet con-
ditions, the baseline grid has to be modified. For
cases involving converging-diverging mixer tubes,
radial cell spacing in successive K-planes (1, J, and
K grid indices correspond to r, 8, and z directions in
cylindrical coordinates) is linearly varied to produce
the desired venturi geometry. Cases involving inlet
air swirl require full 360° grids, since the symmetry
plane is lost.

To study the flow blockage associated with the
fuel injection tube, an externally generated grid is
employed that explicitly includes the tube (Fig. 2C).
To reduce grid effects and return to the cell spacing
needed to represent the downstream dilution holes,
the grid is slowly returned to the original baseline
configuration over several K-planes downstream of
the injection tube.

For all cases examined, the air inlet temper-
ature and pressure are 1100° F and 11.5 atm, re-
spectively. For the baseline case, the total air mass
flow rate is 0.161 Ibm/sec, with 88.5% of the flow
entering through the base of the mixer tube and the
remainder split equally amongst the dilution holes
ringing the tube near its downstream exit. The over-
all fuel/air ratio is 0.033. The fuel is injected at a
velocity of 52.7 fps, with a droplet SMD of 20 ym
and a spray cone angle of 20°.°

Analysis

To quantify the degree of mixing, three exit
plane fuel/air ratios are calculated: minimum, maxi-
mum, and average. The first two are simply the
minimum and maximum values found amongst the
grid cells located at the exit plane of the mixer tube,
while the average value is a spatial or cell average
across the exit plane. The spatial average is more
revealing than the mass average, since the latter
just equals the overall fuel/air ratio, a constant in
these calculations. On the other hand, the spatial
average varies with the distribution of fuel vapor
across the exit plane owing to the variation in cell
density. If the fuel is concentrated near the center
of the tube (Region A in Fig. 2D), the average is
relatively high, since there is a greater cell density
near the tube’s center. However, if there is more
fuel near the wall (Region B), the average is
relatively low, due to the lower cell density near the
wall.

In all cases, the three reported fuel/air ratios
are averages over a number of cycles, typically
1,000, to account for the random changes in the
fuel/air ratio at the exit plane due to the stochastic
spray model. Since the distribution of droplets intro-



duced by the spray model changes as a random
variable, the fuel-air distribution also changes over
time. This can be seen in the time histories of the
average and maximum exit plane fuel/air ratios
(Fig. 3) and fuel droplet distributions at various time
points (Figs. 4, 5, and 8) for the baseline case.

Results

To date, 50 IMFH analyses have been com-
pleted (Table 1), examining the effects of a variety
of parameters on fuel-air mixing and combustion.

Modeling Considerations
Numerical Effects

As noted above, KIVA-II simulates spray drop-
lets as collections of computational particles. The
accuracy of this depiction increases as more par-
ticles are used. However, more particles require
more memory and more computations, so a bal-
ance has to be struck between accuracy and cost.
As comparisons between baseline cases run with
injection rates of computational particles of 10° and
107 particles per second (pps) show only minor dif-
ferences in results (Fig. 7), the 10° pps rate is used
throughout this series of analyses.

Numerical accuracy is also strongly dependent
oh grid resolution. Comparison of results obtained
with the previously described 11x19x151 grid and
a finer 17x19x151 grid with logarithmic cell spacing
near the tube wall show only minor differences for
the baseline case (Fig. 8). The variation in the
average exit plane fuel/air ratio is a result of the
redistribution of cells due to the logarithmic spacing
in the fine grid.

Fuel Injection Tube

In most of the calculations presented here, the
flow blockage due to the fuel injection tube is not
represented. To examine what effect this blockage
has on fuel-air mixing, an analysis of the baseline
configuration with the fuel injection tube included is
performed to allow a side-by-side comparison to be
made (Fig. 9). While the axial velocity field im-
mediately behind the injection tube is significantly
disturbed, there is little effect on the fuel spray pat-
tern and, consequently, relatively little effect on the
fuel-air distribution. While there is some enhanced
mixing on that side of the mixer tube downstream of
the injection tube, there is insufficient fuel there to
strongly effect the overall fuel-air distribution.
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Fuel-Air Mixing
Fuel Droplets and Sprays

In the next series of analyses, the fuel injection
angle is varied from the baseline’s 15° to 90°, i.e.,
from roughly perpendicular to the inlet air flow to
paralle! to that flow (Fig. 10). Initially, there is rel-
atively little change, until the angle increases to
where the spray impingement on the mixer tube
wall is eliminated. As the angle increases from that
point, there is substantial improvement in overall
mixture uniformity. The star-shaped pattern in the
exit plane fuel/air ratio at 90° (Fig. 10B) results from
the dilution hole inflow.

A similar improvement in uniformity is obtained
by reducing the fuel injection velocity (Fig.11). Curi-
ously, increasing the injection velocity also reduces
the maximum exit plane fuel/air ratio. However, the
minimum fuel/air ratio in this case is reduced far
more, indicating that overall non-uniformity at the
higher injection velocity is still increased. The de-
crease in the maximum fuel/air ratio may be a resuit
of the higher velocity displacing the spray cone out-
ward such that the mixer tube wall culs across a
broader section of the cone, thus spreading the fuel
across a wider arc along the tube wall.

Perhaps surprisingly, droplet size has little ef-
fect on mixing, at least over the range of sizes con-
sidered here (Fig. 12). However, the fuel droplet
population results suggest that uniformity will in-
crease with even smaller droplets, since it appears
that vaporization becomes so fast that wall impinge-
ment will be avoided altogether. Of course, such
small sizes may not be physically realizable.

These last two series of calculations point to an
unexpected advantage of numerical analysis. Given
the structure of KIVA-ll, it is possible to vary inde-
pendently parameters that, in reality, are closely
coupled, e.g., fuel injection velocity and fuel droplet
SMD. This permits separate evaluations of these
parameters to be made that may be difficuit to per-
form experimentally.

The final spray parameter to be considered is
the spray cone angie (Fig. 13). As might be ex-
pected, increasing the cone angle improves the de-
gree of fuel-air mixing.

Air Inflow

Turning to modifications of the air inflow, the
first set of analyses examines the addition of a
venturi effect (Fig. 14). In this series, the throat of
the venturi is at the same axial station as the fuel



injection. The level of constriction is described by
the ratio of the minimum to maximum tube radii.
Three ratios, from 0.5 to 0.75, are considered here.
As anticipated, increasing the throat constriction
significantly increases the fuel-air mixture uniformity
at the exit plane of the mixer tube. However, aero-
dynamic choking at the throat limits the degree of
constriction permissible. In this investigation, the
flow chokes in the 0.5 radius ratio tube.

Inlet air swirl is another means of improving
fuel-air mixing. Swirl angles from 30° to 60° are
considered in this study (Fig. 15), with the best
mixing found at the highest angle.

In practice, swirl and venturi effects are often
combined. Unfortunately, the baseline conditions in
the present study make contemplating this com-
bination difficult, since even modest amounts of
swirl combined with the flow acceleration due to the
venturi’s flow constriction lead to choked flow under
the baseline inflow conditions. In fact, only one
combination of the parameter values previously
considered separately in this study avoids choking
(Fig.16). However, this case does demonstrate that
the combination of swirl with the venturi flow con-
striction can improve mixing over either alone.

Dilution Holes

Calculations show that relocating the dilution
holes from near the mixer tube exit {o the axial
station where the fuel injection occurs has almost
the same effect as an equivalent venturi tube con-
figuration (Fig. 17). By examining the disturbance to
the mean flow created by the dilution holes, it is
found that they create a 20% reduction in flow area
or the equivalent of a 0.9 radius ratio venturi tube.

Removing the dilution holes altogether also af-
fects the degree of mixture uniformity (Fig. 18).
First, o maintain the overall fuel/air ratio, the inflow
velocity at the base of the mixer tube must be in-
creased, leading to a slight reduction in the degree
of penetration of the fuel spray and a small increase
in the downstream distance through which the fuel
droplets are convected before vaporizing. These
same effects result if the fuel injection velocity is
reduced. Based on the effect that reducing fuel
injection velocity has on mixing (Fig. 11), this in-
crease in the air velocity can be expected to im-
prove the fuel-air distribution at the mixer tube exit,
but the exit plane values show that mixing is actu-
ally slightly poorer without the dilution holes. Thus,
the direct mixing effect that the dilution holes pro-
vide outweighs the slight losses due to the lower air
inlet velocity at the mixer tube enfrance.
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Multiple Fuel Nozzles

Increasing the number of fuel injection nozzles
substantiaily improves the fuel-air distribution at the
exit of the mixer tube (Fig. 19). An additional case
shows that staggering the nozzles, in this instance
by an inch, does not appreciably affect the degree
of uniformity at the exit plane. The slight increase in
non-uniformity is likely due to the downstream dis-
placement of the second nozzle.

Mixer Tube Length

Reducing the mixer tube length moves the fuel
injection point closer to the tube exit, consequently
leaving less distance for fuel-air mixing to be per-
formed. Calculations in this series show the de-
creasing uniformity as the mixer tube is shortened
(Fig. 20). The results for the 50% baseline case are
even poorer than the exit plane plot indicates, since
a small number of droplets are leaving the tube
without vaporizing. Thus, there is a small amount of
fuel unaccounted for in the fuel/air ratios, since their
calculation only considers vaporized fuel.

Mixer Tube Diameter

In considering changes in mixer tube diameter,
the effect on the mass flow rate of air entering the

tube has to be taken into account. Three ap-

proaches are considered here:

In the first (Fig. 21), the flow rate is held con-
stant by reducing in the velocity of the air entering
the tube.

In the second (Fig. 22), the inlet velocity of the
flow entering at the base of the mixer tube is held
constant, leading to an increase in the mass flow.
To maintain the same flow splits between this inflow
and that through the downstream dilution holes, the
dilution hole flow is increased proportionately. Like-
wise, to maintain the same overall fuel/air ratio, the
fuel flow rate is also increased.

In the third (Fig. 23), the inlet velocity of the
flow entering at the base of the tube is again held
constant, but the dilution hole flow is maintained at
the baseline flow rate. The fuel flow rate is again
adjusted to match the baseline fuel/air ratio.

In all three cases, the degree of non-uniformity
increases as the diameter is increased, yet the uni-
formity differences among the three cases are rela-
tively minor. However, the corresponding pressure
drops within the IMFH tubes (Fig. 24) do vary sig-
nificantly. This is due to a combination of the varia-
tions among the mass flow rates and the relative



strengths of the dilution flows.

Similar effects are seen when the pressure
drop at the mixer tube exit is added to that within
the tube itself (Fig. 25). With the dump included,
these calculated pressure drops can be compared
to experimental measurements using the following
empirical expression:

m =AC,y2pAp

where AC, for the baseline IMFH tube geometry is
approximately 0.16 in®."® For the baseline inflow
conditions, the pressure drop based on this equa-
tion is 4.61%, which compares favorably to the
4.30% pressure drop found numerically. For the
150% baseline diameter case with the baseline
mass flow rates, the pressure drop found with the
above expression is 0.911%, which compares with
1.00% found numerically. Comparisons to the re-
maining cases shown in Fig. 25 are not possible as
their altered dilution flows change their AC, values.

Flashback Resuits

As decreasing flow velocities and smaller pres-
sure drops promote flashback, the calculations in-
volving mixer tubes of increasing diameter have
been extended to include combustion. Excepting
the baseline case, all show some evidence of flash-
back (Table Il and Fig. 26), but the flashback is
limited to a small region in the vicinity of the dilu-
tion holes on either side of the fuel injection plane.
The poor fuel-air distribution within the tube prob-
ably explains why no flashback is observed around
the other dilution holes; there is insufficient fuel to
support combustion around them.

Although the exact mechanism for propagating
flashback into the mixer tube is not yet clear, a
potential explanation can be proposed: It appears
that the adverse pressure gradient immediately
downstream of the dilution holes leads to a reverse
flow region that draws the flame front back into the
mixer tube. When the flame enters the tube, it heats
a pocket of gas within, causing the flow to accel-
erate. The faster flow then drives the flame back
out of the tube. The flow within the tube then de-
celerates to the point where the flame can re-enter,
beginning the cycle again.

150% Baseline Diameter Mixer Tube

The importance of the dilution holes in estab-
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lishing flashback within the mixer tube can be seen
by examining the combustion behavior in a series
of calculations involving the 150% baseline diam-
eter mixer tube (Fig. 27). As might be expected, the
case with the baseline mass flow rate and, hence,
the lowest flow speed exhibits the strongest flash-
back. Maintaining the baseline inflow velocity and
dilution flow splits leads to a marginal degree of
flashback. Reducing the flow blockage due to the
dilution holes even more by keeping the baseline
inflow velocity and baseline dilution flow rate less-
ens the extent of flashback even further. Flash-
back is completely eliminated by deleting the dilu-
tion flow altogether.

There is also a periodic behavior exhibited by
the observed flashback phenomenon. For the 150%
baseline diameter analyses, this is most obvious in
the baseline mass flow case (Fig. 28).

If the mixer tube is assumed to be an ideal
closed-open cylinder filled with a uniform fuel-air
mixture, the longitudinal mode frequencies are:

f=2ntha o542 .
aL

where the tube length (L) is found in Fig. 1 to be 5.5
inches and the acoustic velocity (a) is estimated by
thermochemistry calculations to be 1815.6 fps."
The fundamental longitudinal mode frequency is
approximately 990 Hz. The 2880 Hz frequency
seen in the numerical calculations most closely
matches the second longitudinal mode which has a
frequency of 2971 Hz.

The discrepancy between these frequencies
may result, in part, from the non-uniformity of the
fuel-air mixture that is ignored in the calculation
using the above formula. A more likely cause, how-
ever, is the failure in the assumption that the down-
stream boundary is truly open, i.e., that the acoustic
pressure vanishes. (Of course, the assumption that
the upstream end approximates a closed boundary,
i.e., vanishing acoustic velocity, is perhaps as sus-
pect.) An empirical correction for real closed-open
tubes estimates the effective tube length for use in
the above frequency formula to be 5.65 inches."
This reduces the fundamental frequency to 965 Hz
and the second mode frequency to 2895 Hz.

Before leaving this case, it is interesting to note
that the details of the combustion process in the
dump region appear to have little effect on flash-
back behavior within the mixer tube. In the present
calculation, the ignition source is terminated at ap-



proximately 9 msec (after time points A and B in
Fig. 28, but before time points C and D). The ig-
nition source consists of a group of cells iocated
approximately halfway between the mixer tube exit
and the exit of the dump region. While the source’s
effect on the combustion process in the dump
region can be seen clearly by comparing the axial
velocity, fuel/air ratio, and temperature plots before
and after termination, there is little effect on the
oscillation frequency, amplitude, or other character-
istics of the flashback.

Although the oscillations in the baseline ve-
locity cases are less organized (Fig. 29), they have
approximately the same 2880 Hz frequency seen in
the baseline mass flow case.

200% Baseline Diameter Mixer Tube

The amplitude of the flashback oscillations in-
creases as the mixer tube diameter is increased to
200% of the baseline, although there remains no
coherent growth or decay trend in the amplitude
over time (Fig. 30). The frequency of oscillation in
the exit plane average temperature drops to ap-
proximately 900 Hz, which is slightly lower than that
of the corrected first longitudinal mode.

250% Baseline Diameter Mixer Tube

Only when the mixer tube diameter is increased
to 250% of the baseline are coherent oscillations in
the flashback behavior cbserved (Fig. 31). Here, a
limit cycle is reached following a period of mono-
tonic growth in amplitude over successive periods.
The frequency of oscillation obtained from the nu-
merical results is 940 Hz, which is close to the cor-
rected first mode value of 965 Hz noted previously.

As the limit amplitude is approached, the point
of maximum penetration of the flame front inside
the mixer tube moves farther upstream and eventu-
ally beyond the dilution holes (Fig. 31E). However,
as with the 150% baseline case, flashback is elimi-
nated when the dilution flow is removed (Fig. 31A).

Summary

The impact of various parameters on the de-
gree of fuel-air mixture uniformity in IMFH mixer
tubes is quantified through a series of numerical
calcuiations. The biggest gains in uniformity are
achieved through a combination of air inlet swirl
and venturi tube geometry. Multiple fuel injection
points also promote good mixing. Additional anal-
yses examining flashback in mixer tubes with var-
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ious diameters and dilution arrangements show that
flashback is strongly affected by the presence of
the dilution holes near the tube exit.
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L

PREVAPORIZATION AND PREMIXING ZONE COMBUSTION ZONE

A. Schematic Diagram.

le 5.5" N 2.0" ———»1
‘« 1.0" »1
v

05 \ g 1.3
Pl Pals)
x 7 / l
FUEL INJECTION TUBE 6 DILUTION HOLES
0.043" OUTSIDE DIAMETER 0.094" DIAMETER
15° TO WALL NORMAL 0.23" «

B. Dimensions for Baseline Case.

Figure 1. Integrated Mixer-Flame Holder.

B. K-Plane without Fuel Tube. C. K-Plane with Fuel Tube. D. Fuel/Air Ratio Patterns.

Figure 2. Grid Characteristics for KIVA-Il Analyses of Integrated Mixer-Flame Holder.
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Figure 3. Average and Maximum Exit Plane Fuel/Air Ratio Time Histories (Baseline Case).
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Figure 4. Fuel Droplet Distribution at 2 msec (Baseline Case).
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Figure 6. Fuel Droplet Distribution at 6 msec (Baseline Case).
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BASELINE WITH LOW PARCEL RATE (108 pps)

BASELINE WITH HIGH PARCEL RATE (107 pps)
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A. Axial Velocity (fps).
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C. Fuel Droplet Population.
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B. Fuel/Air Ratio.
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D. Exit Plane Fuel/Air Ratio.

Figure 7. Baseline Cases with Varying Injection Rates of Computational Droplet Parcels.

BASELINE WITH COARSE GRID (11x19x151

)

BASELINE WITH FINE GRID (17x19x151)
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A. Axial Velocity (fps).
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)

0 125

BASELINE WITH FINE GRID (17x19x151
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102
C. Fuel Droplet Population.
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BASELINE WITH COARSE GRID (11x19x151)

107°
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1wt 0 10s AT 40

B. Fuel/Air Ratio.

. I Vg, x 1072 I Hapay X 1077
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0
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Figure 8. Baseline Cases with Coarse and Fine Grids.
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BASELINE WITHOUT INJECTION TUBE BASELINE WITHOUT INJECTION TUBE

BASELINE WITH INJECTION TUBE BASELINE WITH INJECTION TUBE

-125 0 125 250 375 0 0 e dg A 1007 10
A. Axial Velocity (fps). B. Fuel/Air Ratio.

BASELINE WITHOUT INJECTION TUBE BASELINE WITHOUT INJECTION TUBE

2.1597x10‘3| 2.6903 { 2.7039

BASELINE WITH INJECTION TUBE

BASELINE WITH INJECTION TUBE

3.7385 x 10° I 2.9617 I 2.4949

C. Fuel Droplet Population. D. Exit Plane Fuel/Air Ratio.

Figure 9. Baseline Cases with and without Injection Tube.
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A. Fuel Droplet Population. B. Exit Plane Fuel/Air Ratio.

Figure 10. Fuel Injection Angle Effects.
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A. Fuel Droplet Population. B. Exit Plane Fuel/Air Ratio.

Figure 11. Fuel Injection Velocity Effects.
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A. Fuel Droplet Population. B. Exit Plane Fuel/Air Ratio.

Figure 12. Fuel Droplet SMD Effects.
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A. Fuel Droplet Population. B. Exit Plane Fuel/Air Ratio.
Figure 13. Fuel Spray Cone Angle Effects.
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A. Fuel Droplet Population. B. Exit Plane Fuel/Air Ratio.

Figure 14. Venturi Tube Effects.
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A. Fuel Droplet Population. B. Exit Plane Fuel/Air Ratio.

Figure 15. Inlet Air Swirl Angle Effects.
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A. Fuel Droplet Population. B. Exit Plane Fuel/Air Ratio.

Figure 16. Combined Venturi and Inlet Air Swirl Angle Effects.
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Figure 17. Coplanar Injection/Dilution Effects.
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Figure 18. Baseline Cases with and without Dilution Holes.
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Figure 19. Multiple Fuel Nozzle Effects.
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Figure 20. Mixer Tube Length Effects.
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Figure 21. Mixer Tube Diameter Effects (Mg, = constant).
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A. Fuel Droplet Population. B. Exit Plane Fuel/Air Ratio.

Figure 22. Mixer Tube Diameter Effects (v,jr = constant, Baseline Air Flow Splits).
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Figure 23. Mixer Tube Diameter Effects (vajr = constant, Baseline Dilution Flow).
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Figure 24. Mixer Tube Diameter Effects: Pressure Drops (without Dump).
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Figure 25. Mixer Tube Diameter Effects: Pressure Drops (with Dump).
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Figure 26. Mixer Tube Diameter Effects (rchair = constant): Combustion Results.
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Figure 26. Mixer Tube Diameter Effects ("?‘air = constant): Combustion Results (Continued).
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Figure 27. Flashback in 150% Baseline Diameter Mixer Tube.
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Figure 27. Flashback in 150% Baseline Diameter Mixer Tube (Continued).
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Figure 28. Flashback in 150% Baseline Diameter Mixer Tube (ﬁ"air = constant).
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Figure 28. Flashback in 150% Baseline Diameter Mixer Tube (r‘ﬁair = constant) (Continued).
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Figure 29. Flashback in 150% Baseline Diameter Mixer Tube (v,j, = constant).
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Figure 30. Flashback in 200% Baseline Diameter Mixer Tube (Mgjr = constant).
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Figure 31. Flashback in 250% Baseline Diameter Mixer Tube (mgj = constant).
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Figure 31. Flashback in 250% Baseline Diameter Mixer Tube (rcﬁair = constant) (Continued).
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Figure 31. Flashback in 250% Baseline Diameter Mixer Tube (’cﬁair = constant) (Continued).
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